

Jersey Water

Water Resources and Drought Management Plan

Appendix H. Drought Management

CONTENTS

Con	tents	1
1.	Purpose	1
2.	Drought Management	1
3.	Drought Monitoring	2
4.	Assesment Of Historical Drought And Potential Future Drought Risks	3
5.	Drought Management Options	4
6.	Options Assessment	11
7.	Decision-making for Implementing Drought Management Measures	15
8.	Simulated La Rosière Desalination Plant Usage	18
9.	Drought Management Measures And Customer Level Of Service	20
10.	Drought Management Communications	22

JERSEY WATER RESOURCES AND DROUGHT MANAGEMENT PLAN

APPENDIX H. DROUGHT MANAGEMENT

1. PURPOSE

This appendix sets out the development of the drought management components of the Water Resources and Drought Management Plan, including the formulation of potential drought management measures to be implemented to safeguard essential water supplies.

2. DROUGHT MANAGEMENT

Development of the drought management component of the Water Resources and Drought Management Plan has taken account of UK water industry best practice guidance on drought planning, including the Environment Agency Drought Plan Guideline, UKWIR reports on the effectiveness of drought-related customer water use restrictions and the Water UK Code of Practice on temporary water use restrictions.

Drought management planning focuses on:

- Ensuring drought risks are identified at the earliest stage though routine hydrometeorological and water resource monitoring
- Assessing the scale, magnitude and duration of likely future drought events
- Identifying viable drought management response measures that can be reliably implemented in a timely manner according to the rate at which drought effects are likely to intensify
- Establishing defined drought management decision points for identification that a drought is developing and intensifying and when to instigate specific drought management measures, such as increasing supply or reducing demand as a drought intensifies
- Determining any regulatory or statutory requirements that Jersey Water might need to comply with or which support implementation of specific drought management measures
- Determining those non-essential water uses that can be restricted in a drought to help conserve water resources for essential water uses (to protect public health and well-being of the population), including considering other water abstractors on the island
- Identifying the monitoring and assessments Jersey Water will use to assess drought management measures and their effects before and after a drought
- Setting out the likely frequency and duration of implementing drought water use restrictions in order to inform customers of the level of service they can expect – both now and in the future
- Setting out the required communications with government, customers and other stakeholders during a drought
- Post-drought recovery measures.

The following sections address these key components which, in turn, have informed the overall drought management approach set out in the Water Resources and Drought Management Plan.

3. DROUGHT MONITORING

Taking account of the nature of the Jersey Water supply system, the primary leading indicator of drought conditions is the amount of rainfall received on the island and, subsequently, the total storage remaining in the Val de la Mare, Queen's Valley, Grands Vaux and Waterworks Valley raw water storage systems (see Appendix C for more details about these raw water sources).

Total rainfall is measured daily at rain gauges at seven separate locations across Jersey (Handois, Millbrook, Augrès, Val de la Mare, Queen's Valley, Greve de Lecq and St. Catherine) and total raw water storage is monitored at least weekly against the long-term average and historic drought event data to provide an early indication of drought conditions. As well as daily rainfall and weekly raw water storage conditions, the following drought indicators will also be used to provide early warning of the risk of worsening drought conditions:

- Soil Moisture Deficit in key surface water catchments, if feasible. The UK Met Office does
 not calculate Soil Moisture Deficit for the Channel Islands and therefore this would likely
 require a number of lysimeters to be installed in the key reservoir catchments or
 development of a derived calculation based on rainfall, temperature and soil conditions.
 This could be developed in conjunction with the agriculture sector who may also benefit
 from the data.
- Maximum and average air temperature (as an indicator of hot weather peak demand risks
 as well as subsequent impact on Actual Evaporation/Soil Moisture Deficit) this data is
 already available daily from the Jersey Met Office.
- Total water production volume (as an indicator of hot and/or dry weather peak and average demand) this data is already available within Jersey Water.
- Water demand, split between household and non-household demand (to disaggregate the
 demand that could be managed through water use restrictions) this data is already
 available on at least a monthly basis within Jersey Water.
- District Meter Area metered peak flow data (to further understand any more local details
 of peaks in demand that may be taking place in response to dry and/or hot weather
 conditions and to further help disaggregate the demand that could be managed through
 water use restrictions). This data is already available at least weekly within Jersey Water.

These indicators will form part of a weekly resource situation report that would be established at the <u>onset of a drought</u> and will include a simple drought risk "dashboard" summary – ranking the risk to water supplies from negligible to high – to inform senior management of the prevailing drought risk. Monitoring frequency will be increased in accordance with the severity of a drought situation up to 3 times a week during a very severe drought.

4. ASSESMENT OF HISTORICAL DROUGHT AND POTENTIAL FUTURE DROUGHT RISKS

As part of the work to assess the reliable water source yield of the Jersey Water supply system and potential future climate change risks (see Appendices C and D), the level of drought risk for the island has been assessed.

Over the historic simulated inflow record (see Appendix C), a number of severe drought events have been identified which, if they were to occur again, would require specific management measures to be implemented by Jersey Water in order to safeguard essential water supplies to customers, taking account of the current and future level of water demand on the island. Severe drought events have occurred relatively frequently over this historic record. The five most severe events to occur over the last 100 years of rainfall and inflow records are listed below and illustrated in Figure H.1:

- 1921-22
- 1944
- 1949
- 1976
- 1990-92

Island widestorage 50.0 3000 **Key Drought Events:** 1921-22 1944 1949 1976 1990-92 45.0 2500 40.0 35.0 2000 Abstraction (MI/d) 0.07 0.07 30.0 1500 ಜ್ಞ 20.0 1000 15.0 Predicted Storage (MI) Dead Storage (MI) Emergency Storage (MI) 10.0 30 DAYS EMERGENCY STORAGE ALLOWANCE 5.0 "DEAD WATER" ALLOWANCE

Figure H.1 Historic modelled drought storage showing key historic drought events: 1900 to 2008

As illustrated in Figure H.1, the two most severe drought events (1921-22, 1990-92) have lasted over at least a two-year period, with a very dry summer followed by a very dry winter which would hinder the refill of storage over the winter months, thereby placing supplies at risk during the subsequent

summer. The most intense drought over the last 100 years was the 1990-92 event. This event dictates Jersey Water's drought planning as the cost of securing supply reliability against the risk of a similar severity drought event occurring in the future is significantly greater than the cost of securing supplies under a repeat of the other major historic drought events (notably 1921-1922 and 1976). It is important for water supply reliability to customers that adequate measures are put in place to mitigate against a future drought with an equivalent, or an increased, severity level as the 1990-92 event (which is considered to have an approximate return period of 1 in 200 years based on evidence of the same drought event available for Southern England).

The assessment of climate change (**Appendix D**) has indicated that there could be a risk of an increase in magnitude/duration of future drought events, but it is important to stress that the available evidence is highly uncertain. Consequently, Jersey Water plans to adopt a prudent approach that "future-proofs" the drought management approach to the risk that a future drought may be more severe in either duration and/or magnitude than those identified from the historic record.

Jersey Water's supply system is reliant on key operational assets being fully available for use in a drought. Asset outages could result in an additional risk to the severity of a future drought, hence our drought management approach also considers the resilience of the supply assets and the overall water supply network to potential outages (see also **Appendix F**).

5. DROUGHT MANAGEMENT OPTIONS

A range of options have been considered for implementation during a drought. Options may be split into two main categories:

- Options to temporarily manage the demand for water.
- Options to temporarily augment water supply availability.

Temporary Drought Demand Management Options: Initial Considerations

Table H.1 sets out the initial wide range of options that were considered as potential measures to manage the demand for water in drought conditions. Options may be considered both individually and cumulatively.

Table H.1 Temporary Drought Demand Management Options: Initial Considerations

Option	Details	Issues	Potential Benefit
Temporary Use Ban	Temporarily restrict	Need to set out a detailed	3-5% reduction
(TUB)	the use of hosepipes	list of uses that would be	to <u>average</u> dry
	and sprinklers, and	prohibited and any	year demand.
	other similar water	exemptions, for example for	
	uses. Permitted under	disabled customers.	Up to 10%
	powers outlined by		reduction to <u>peak</u>
	the Water Law.		week demand.

Temporary Non-	Wider temporary	Some businesses may be	1-2% reduction
Essential Water Use	restrictions on non-	adversely affected with a	to <u>average</u> dry
Ban	essential uses of	loss of income.	year demand.
	water, including some		
	commercial uses such	Need to set out a detailed	2-3% reduction
	as hand car washes (if	list of uses that would be	to <u>peak week</u>
	water not recycled),	prohibited and any	demand.
	filling private and	exemptions, for example for	
	commercial (but not	car wash companies that	
	public) swimming	have 100% water recycling	
	pools, washing of	systems.	
	stonework and		
	windows, water use		
	by municipal parks,		
	turning off beach		
	showers and taps.		
	Temporarily restrict	Some risks related to	0.1% reduction
	Fire Service hydrant	drinking water quality	to average dry
	testing and Jersey	(flushing) and fire safety	year demand
	Water hydrant	(hydrant testing).	
	flushing activities.		
Enhancing Leakage	Reduce leak repair	Leak repair times are	Less than 0.1
Control and Water	response times by	already very low, so limited	MI/d benefit.
Efficiency Measures	providing additional	benefits.	
	resources through use		
	of overtime or		
	weekend working.		
	Free customer pipe	Expensive option in terms of	Less than 0.1
	repair during a	cost/benefit. Legally,	MI/d benefit.
	drought.	property owners are	
		already required to repair	
		leaks on their customer	
		supply pipe in a timely	
	Drovido odditica al	manner.	Loss them 0.3
	Provide additional water audits for	Cost and resource	Less than 0.2
	commercial and	implications. There will	MI/d benefit.
	residential customers.	already be savings from	
	residential customers.	existing Jersey Water audit activity included in the base	
		,	
		demand management activities.	
Operational Water Use	Restrict operational	Some risks related to	0.01 MI/d
Sperational Water 03e	flushing (continuous	drinking water quality and	0.01 Will a
		arming water quality and	

	flushing at Greve de	very small water saving	
	Leq sampling points;	benefit.	
	mains flushing only		
	occurs when testing		
	new mains).		
	Replace potable water	Recycled water comes with	0.01 Ml/d
	used in construction	some potential effects on	
	(e.g. spraying) with	public health. Logistically	
	recycled grey water.	challenging option.	
	Cease Jersey Water's	An alternative company (AA	0.02 MI/d
	Water Tankering	Langlois) also offers this	
	Service, including	service.	
	private swimming		
	pool refill service.		
	Distribution Pressure	Need to be on call to change	0.04 MI/d
	Control: temporarily	pressures in response to a	·
	lower the pressure in	call from the fire services in	
	the water network to	case of emergency.	
	reduce usage and the	Some flats/apartment	
	volume lost from any	blocks may suffer	
	leaks.	temporary loss of supply.	
Incentive Tariffs	Offer of incentive	Not currently easy to	0.02 MI/d
	tariffs, e.g. provide a	monitor with current billing	,
	voucher if customers	system set up and difficult	
use less water than to implement quickly in a			
	usual.	drought.	
Communication	Enhance water	Additional activity to	2-3% reduction
	conservation	normal year	to average dry
	communications, and	communications on using	year demand.
	promote the	water wisely.	year demand.
	importance of	water wisery.	3-4% reduction
	reporting leaks and		to peak week
	fixing dripping taps,		demand.
	provide advice on how		demand.
	to use water wisely,		
	etc.		
	Cic.		
	Could include Water		
	Efficiency Roadshows,		
	mainstream media,		
	social media,		
	television, radio and		
	newspaper adverts,		

	bus and street		
	adverts, sponsorship		
	of weather bulletins.		
Request to customers			1-2% reduction
	· •		
	to voluntarily refrain		to average dry
	from using hosepipes		year demand.
	and sprinklers (rather		
	than impose		2-3% reduction
	restrictions)		to peak week
			demand.
	Request to non-		0.5-1% reduction
	household customers		to average dry
	to minimise non-		year demand.
	essential water use.		
Restrict supply of	All water supplies to	Very unlikely to be	15% reduction to
water to customers	customers cut off on a	acceptable except in a	average dry year
using standpipes	rota basis for a	drought worse than historic	demand.
and/or rota cuts	defined period of the	drought conditions. Risk of	
	day (e.g. 6 hours), or	significant public health	20% reduction to
	supplies cut off all the	impacts. Technically very	peak week
	time with use of	challenging to implement.	demand.
	standpipes	Hospitals, care homes,	
	implemented as the	prison, schools (unless	
	only means of supply.	school holidays) and other	
	,	essential public service	
		properties would need to be	
		exempted. Fire service	
		considerations would need	
		very careful planning and	
		liaison arrangements.	
		naison arrangements.	

Jersey Water recognises the absolute importance of maintaining essential water supplies to all of its customers. It is therefore considered <u>unacceptable</u> to plan to restrict <u>essential</u> water use or ration essential water supplies to customers through the use of standpipes or rota cuts if there was a repeat of the worst historic drought conditions – other measures need to be implemented instead to maintain essential water supplies. These extreme demand management measures may only be required if a future drought is more severe than the worst historic drought on record.

The potential benefit figures from implementing demand management options shown in Table H.1 are somewhat uncertain (and are not necessarily cumulative, depending on which combination of measures are implemented). Communications, incentives and temporary use measures restrictions (both encouraged and enforced) rely heavily on the participation and goodwill of customers. Some measures have a seasonal variability, with the full benefit only being realised in spring and summer

months (e.g. beach tap/shower use and garden watering with hosepipes is minimal during winter months).

Temporary Drought Supply Augmentation Options: Initial Considerations

Table H.2 indicates the potential temporary measures that were initially considered by Jersey Water to augment water supply availability in drought conditions.

Table H.2 Potential Temporary Drought Supply Augmentation Options: Initial Considerations

Option	Details	Issues	Potential Benefit
Reduce impact of	Use existing	Food security is important	Benefit is very
other abstractors on	regulatory powers (or	for Jersey and any	low in drought
public water supply	seek voluntary	reduction to agricultural	conditions due to
sources.	arrangements) to	abstraction may have	low flows but
	restrict or prohibit	adverse effects on crop	higher benefits in
	abstractions by other	yields.	drought recovery
	abstractors upstream		periods when
	of Jersey Water		flows are higher.
	abstraction sources.		
Alternative Supply	Measures to increase	Option would require laying	Will help to refill
Options	the transfer of water	of temporary pipework	Queen's Valley
	eastwards to augment	and/or installation of	reservoir,
	Queen's Valley during	temporary pumping	enhancing the
	refill period. Queen's	stations with potential for	reliable yield by
	Valley is the largest	disruption to local	up to 0.8 MI/d
	reservoir but has a	residents/landowners. A	depending on
	relatively small	permanent solution to	the additional
	catchment area.	install permanent pipework	volume that can
		and pumping stations is	be transferred
		preferable if it can be	from sources in
		delivered in the time	the west of the
		available.	island.
	Harness small surface	Small catchments are likely	Very small yield
	water catchments	to dry up before the	benefit in
	(e.g. Rozel, Beaumont,	principal Jersey Water	drought and
	Fernlands and St	catchments so yields may	small benefit
	Catherine) and pipe	be very limited. Would	during reservoir
	water to operational	require temporary	refill period.
	catchments.	pipework and pumps to be	
		installed with potential for	
		disruption to local	
		residents/landowners.	

	Harness North St.	Nitrate levels in this	Small benefit and
	Ouen's Bay	catchment are in excess of	drinking water
	·		
	catchment.	100 mg/l and water is	quality standards
		already abstracted by	for nitrate may
		farmers for irrigation.	constrain use.
	Use the Fort Regent	Water quality is generally	Approximately
	Cavern as an	very poor as it is used to	60 MI storage
	alternative reservoir	hold contaminated flood	might be
		water and only refills in	available and
		heavy rainfall events.	would be unlikely
			to recharge
			during a drought
			once utilised.
	Develop new	Small benefits during	Small benefit of
	groundwater sources	drought and timescales to	approximately
	at Grands Vaux,	drill new boreholes will	0.1 to 0.3 MI/d
	Ponterrin and Chaise	limit the duration of benefit	_
	au Diable	once commissioned.	
	New temporary	Technically challenging and	Up to 5 MI/d
	desalination plant on	expensive. Delivery	,
	East Coast	timescales will likely be too	
		long to provide a benefit in	
		drought. Lack of	
		availability of temporary	
		desalination treatment	
		modules due to drought in	
		other countries. Would	
		require new sea water	
		·	
		intake and delivery pipelines which would take	
		' '	
		time to construct in	
		challenging tidal and	
		marine conditions. Likely	
		adverse effects on marine	
		and coastal environmental	
		habitat in designated	
		conservation area.	
Third Party Sources	Make use of 3 rd party	It is likely that most third-	Very low benefit,
	water sources on the	party water sources would	probably no
	island	dry up or be severely	greater than 0.15
		depleted during drought	MI/d
		with little benefit.	

Recommission or	Abstract more water	PFAS groundwater	0.5 MI/d
Expand Existing Water		contamination plume may	assuming can
Sources	boreholes in a drought	be pulled closer to the	install temporary
Sources	with temporary GAC	boreholes exacerbating	GAC treatment
	treatment to address	water quality issues. Water	modules.
	the PFAS pollution.	quality may not be	illoudies.
	the FTAS polition.	satisfactory for potable	
		, ,	
	Commissioning a now	supply.	Lin to F MI/d
	Commissioning a new	Expensive and delivery	Up to 5 MI/d
	temporary	timescales may not provide	
	desalination	the benefit in time. Lack of	
	treatment stream at La	availability of temporary	
	Rosière.	desalination treatment	
		modules due to drought in	
		other countries. Blending	
		ratios with freshwater could	
		be challenging in drought if	
		Val de la Mare reservoir	
		storage is depleted.	
Other options	Undersea transfer pipe	Dependent on availability of	Unlikely to be
	to/from France (~40	local French water sources –	feasible. Could
	km) in the St Malo	likely that drought will also	potentially
	peninsular area.	be affecting water sources	provide up to 5.0
		in this part of France. Water	MI/d.
		resources in this part of	
		France are already limited	
		and at the extremity of the	
		regional treated public	
		water supply network.	
		Challenging construction	
		requirements and very	
		expensive.	
	Import water from	Expensive and availability	Unlikely to be
	abroad by shipping	likely to be limited due to	feasible but could
	tankers.	demand from other	provide 1-2 MI/d.
		countries. Challenges with	
		availability of harbour space	
		to moor the tankers and	
		discharge to road tankers to	
		distribute to raw water	
		storage reservoirs.	
L	l		

6. OPTIONS ASSESSMENT

There are a limited number of options to reduce demand and augment supply in a drought and most provide only a very small benefit if implemented in isolation. Options that provide greater benefits are very challenging for a variety of reasons with implementation lead times that may well exceed the duration of need during a time-limited drought event.

As part of the option appraisal process (see Appendix I) for the Water Resources and Drought Management Plan, the options set out in Section 5 above were considered for inclusion in the final recommended programme for the 25-year planning period, taking into account a range of factors such as:

- Legal, regulatory, commercial and political issues
- Financial costs
- Feasibility
- Availability of options
- Implications for drinking water quality
- The benefits of the option in severe drought.

Following an internal workshop to review the initial list of options shown in Tables H.1 and H.2, several of the options were removed from consideration in the options appraisal coarse screening process due to technical and/or very high cost reasons, as summarised in Table H.3.

Table H.3 Drought management options discarded prior to option coarse screening process

Option	Reason(s) for discarding
Reduce leak repair response	Leak repair times are already very low, so limited benefits.
times by providing additional	Additional leakage control actions on a permanent basis are
resources through use of	a better solution than a temporary measure. Permanent
overtime or weekend working.	measures to further reduce leakage are included in the
	option appraisal process.
Free customer pipe repair during	Expensive option in terms of cost/benefit. Legally, property
a drought.	owners are already required to repair leaks on their
	customer supply pipe in a timely manner and this is the best
	option to pursue in a drought.
Provide additional water audits	Audit activity already included in the base demand
for commercial and residential	management activities. Additional water audit actions on a
customers.	permanent basis are a better solution than a temporary
	measure. Permanent measures for increased water audit
	activities are included in the option appraisal process.
Restrict operational flushing	Some risks related to drinking water quality and very small
(continuous flushing at Greve de	water saving benefit. In a drought, these activities would
Leq sampling points; mains	be carefully managed to minimise the volumes of water lost

flushing only occurs when testing	from the water network but volumes involved are very
new mains).	small.
Replace potable water used in	Recycled water comes with some potential effects on public
construction (e.g. spraying) with	health. Logistically challenging option to collect grey water
recycled grey water.	in any appreciable volume to be viable.
Cease Jersey Water's Water	Restricting swimming pool filling and other non-essential
Tankering Service, including	water uses included as water use restriction options so this
private swimming pool refill	option does not provide any additional water saving benefit
service.	in a drought.
Distribution Pressure Control:	Not a feasible option at a scale necessary to achieve water
temporarily lower the pressure	saving benefit. Technically challenging as need to be able
in the water network to reduce	to increase pressure rapidly in response to a call from the
usage and the volume lost from	fire services for fire fighting water supplies. Some
any leaks.	flats/apartment blocks may suffer temporary loss of supply
,	requiring provision of alternative water supplies.
Offer of incentive tariffs, e.g.	Not currently easy to monitor with current billing system
provide a voucher if customers	set up and difficult to implement quickly in a drought.
use less water than usual.	Incentive tariffs are not included as a permanent option for
dae leas water than asaan	consideration at this time, but will be reviewed again in the
	future as part of a wider review of the tariff structure and
	taking account of experience in England and elsewhere of
	such tariffs (e.g. the Thames Water trial).
Use existing regulatory powers	Food security is important for Jersey and any reduction to
(or seek voluntary arrangements)	agricultural abstraction may have adverse effects on crop
	yields. Water supply benefit is small versus the impact on
'	wider economy, making this option unfavourable.
abstractions by other abstractors	wider economy, making this option unlavourable.
upstream of Jersey Water	
abstraction sources.	A
Measures to increase the	A permanent solution to install permanent pipework and
transfer of water eastwards to	pumping stations is preferable and is included in the option
augment Queen's Valley during	appraisal process. A partial temporary solution may be
refill period. Queen's Valley is the	feasible but cannot be relied on to maintain supplies due to
largest reservoir but has a	the uncertainty around delivery and the benefit of a
relatively small catchment area.	temporary solution during a drought.
Harness small surface water	Small catchments are likely to dry up before the principal
catchments (e.g. Rozel,	l
	Jersey Water catchments so yields may be very limited.
Beaumont, Fernlands and St	Would require temporary pipework and pumps to be
Catherine) and pipe water to	Would require temporary pipework and pumps to be installed with potential for disruption to local
·	Would require temporary pipework and pumps to be installed with potential for disruption to local residents/landowners. A permanent solution for the Rozel
Catherine) and pipe water to operational catchments.	Would require temporary pipework and pumps to be installed with potential for disruption to local residents/landowners. A permanent solution for the Rozel catchment is included in the option appraisal process.
Catherine) and pipe water to	Would require temporary pipework and pumps to be installed with potential for disruption to local residents/landowners. A permanent solution for the Rozel

	Not a viable option due to drinking water quality risks and the low level of benefit to water supplies.
Use the Fort Regent Cavern as	Water quality is generally very poor as it is used to hold
an alternative reservoir	contaminated flood water and only refills in heavy rainfall
	events. Logistically very challenging to abstract the water
	to existing raw water storage facilities. Not a viable option
	due to these issues and the low level of benefit to water
	supplies.
Develop new groundwater	Small benefits during drought and timescales to drill new
sources at Grands Vaux,	boreholes will limit the duration of benefit once
Ponterrin and Chaise au Diable	
Ponterrin and Chaise au Diable	commissioned. Permanent option to develop new
	groundwater source is included in the option appraisal
	process which would be a better solution than drilling a
	new borehole during a drought with a limited duration of
	benefit.
New temporary desalination	Technically challenging and expensive. Delivery timescales
plant on East Coast	will likely be too long to provide a benefit in drought. Lack
	of availability of temporary desalination treatment
	modules due to drought in other countries. Would require
	new sea water intake and delivery pipelines which would
	take time to construct in challenging tidal and marine
	conditions. Likely adverse effects on marine and coastal
	environmental habitat in designated conservation area.
	Permanent solution is included in the option appraisal
	process.
Make use of 3 rd party water	It is likely that most third-party water sources would dry
sources on the island	up or be severely depleted during drought with little
	benefit, so this is not a viable option.
Undersea transfer pipe to/from	Dependent on availability of local French water sources –
France (~40 km) in the St Malo	likely that drought will also be affecting water sources in
peninsular area.	this part of France. Water resources in this part of France
	are already limited and at the extremity of the regional
	treated public water supply network. Challenging
	construction requirements and very expensive. Not a
	viable option to be implemented in the timescales of a
	drought. A permanent option has been included for
	consideration in the option appraisal process.
	<u> </u>

The remaining options were taken forward to the option coarse screening process and, subsequently, a smaller number of options were carried forward to the fine screening process (see **Appendix I**). Tables H.4a and H.4b summarise the drought management options discarded during the option coarse screening and fine screening processes, respectively.

Table H.4a Drought management options discarded during the option coarse screening process

Option	Reason(s) for discarding	
Ship water to Jersey from abroad	Very high costs (including paying retainers to shipping	
	companies and water suppliers) and difficult operational	
	logistics for a temporary measure.	
Water rationing using standpipes	Substantial public health risks and unacceptable to	
and rota cuts to the supply of	customers. Should only be considered as part of civil	
water at customer taps.	emergency measures and not planned as part of sustaining	
	essential water supplies to customers in severe drought	
	conditions.	

Table H.4b Drought management options discarded during development of the final Feasible Options list

Option	Reason(s) for discarding		
Install additional temporary	High cost (including paying a retainer to a supplier) and		
desalination treatment process	takes time to commission to meet water quality needs.		
at La Rosière (1-2 MI/d capacity)	Availability in drought in a timely manner is a risk due to		
	competing demand in other locations. Permanent		
	installation to provide additional capacity for drought is a		
	better overall solution.		
Bring abandoned boreholes back	Low supply benefit in a drought and water quality risks.		
into supply	Keep under review if any reliable boreholes are identified		
	that could be used in a drought.		
Install temporary PFAS	Viable option but other permanent solutions (e.g. Option		
treatment (GAC unit) at St	S6) were considered more cost-effective and reliable in a		
Ouen's boreholes to increase	severe drought. Keep under review for next plan update.		
borehole output.			

The remaining temporary drought management options shown in **Table H.5** were included in the final Feasible Options list for consideration during the programme appraisal process.

Table H.5 Drought management options included in the final feasible options list

Option Reason for inclusion

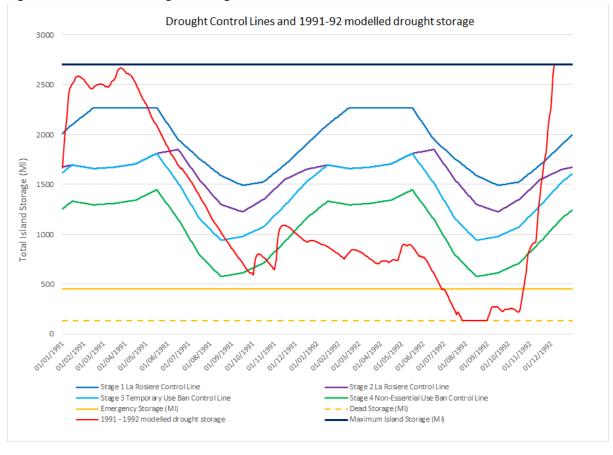
Enhanced customer water efficiency	Readily implemented with short lead time. Relatively		
and "use water wisely" education and	low cost and achieves high level of awareness to		
awareness campaign	customers of the need to conserve water use in a		
	rapid timescale (radio, television, social media, print		
	media, website, leaflets, promotion at events and		
	public spaces).		
Temporary Water Use Ban – covering	Readily implemented under existing legislation. Uses		
various non-essential water uses with	can be selected depending on time of year and likely		
minimal social or economic impact.	volumes to be saved. Could include a ban on watering		
	gardens with a hosepipe or sprinkler, washing private		
	cars with a hosepipe (except any commercial car wash		
	enterprises where water is recycled), filling private		
	swimming pools (aside from commercial		
	hotels/private leisure centres), paddling pools,		
	ornamental ponds or fountains.		
Temporary Non-Essential Water Use	Readily implemented under existing legislation. Uses		
Ban – covering a wider range of non-	can be selected depending on time of year and likely		
essential water uses with some social	volumes to be saved. Could include banning the use		
or economic impact.	of: all car washes (except where water is recycled);		
	washing of windows/buses/ boats/ outdoor surfaces;		
	irrigation of sports grounds/ civic parks / newly laid		
	turf; water for dust suppression (except for health		
	and safety reasons), filling of all swimming pools		
	except public swimming pools.		

Following the programme appraisal process (**Appendix J**), all three of the drought management options shown in Table H.5 were included in the final preferred programme of measures to balance supply and demand in drought conditions. In combination, these drought management measures would provide estimated temporary demand savings of around 5% of dry year average demand (around 1 Ml/d) during the duration of a severe drought, but actual savings in a specific drought will depend on the prevailing demand and weather conditions. These measures are available to be implemented already in a drought under existing legislation.

7. DECISION-MAKING FOR IMPLEMENTING DROUGHT MANAGEMENT MEASURES

UK best practice for drought management recommends that water companies develop a series of sequential drought decision points or "control lines" to respond to the evolution of a drought event, with a gradation of response of drought management measures linked to different decision control lines based on the key indicator of drought severity (i.e. total raw water storage volume in the case of Jersey Water).

The drought decision control lines need to be set at a level of water storage that provides sufficient time between initiating a set of drought management responses and actually realising the benefit of


the management response. Inevitably, this is likely to mean that, in some cases, particular management measures are implemented but are subsequently found not to have been necessary at a later stage as the weather and/or demand conditions improved. Equally, the drought decision points need to reflect different patterns of drought events such that they can cater for a variety of possible future droughts.

A series of key drought decision control lines linked to total island raw water reservoir storage have been developed based on modelling of historic drought conditions (Figure H.2):

- Stage 1: Consider need to commence operation of Stage 1 of the La Rosière desalination plant
- Stage 2: Consider need to instigate a Drought Customer Awareness Campaign seeking voluntary actions to reduce non-essential water use. Consider the need to commence operation of the second treatment stage at La Rosière desalination plant.
- Stage 3: Consider and consult with key stakeholders and government about the need to implement a Temporary Use Ban prohibiting a range of specified water uses with a focus on domestic customers.
- Stage 4: Consider and consult with key stakeholders and government about the need to implement a Non-Essential Use Ban prohibiting a further range of specified water uses with a greater focus on commercial customers.

The indicative control lines shown in Figure H.2 are based on analysis of the modelled historic drought events to identify the maximum rate of water storage decline in different drought conditions in order to assess how many days would be available to implement drought management measures before further, more intensive, actions would need to be initiated. Modelling has been used to help optimise the drought control lines, seeking to minimise the frequency with which the lines are crossed whilst ensuring there is sufficient time to implement the more intensive drought management measures in a severe drought to safeguard essential water supplies.

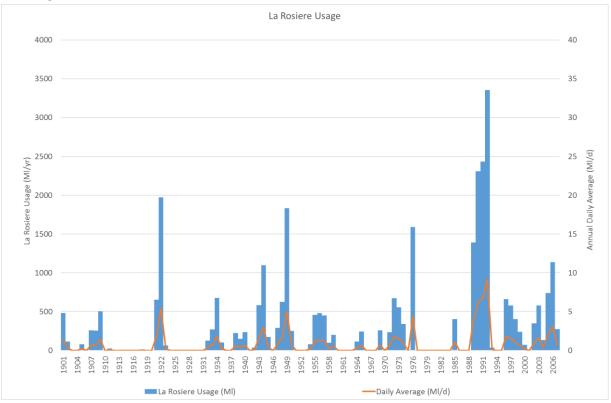
Figure H.2 Indicative Drought Management Control Lines

Benefits from the implementation of measures at different control lines may not be realised immediately. Bringing La Rosière desalination plant into supply has a lead time of several weeks due to the start-up processes that have to be completed before being able to treat water to meet the required water quality standards for blending with surface water sources prior to full potable treatment at Handois and/or Augrès water treatment works. Although evidence suggests a good reception to media campaigns (e.g. Summer 2018), customer communication messages require time to circle around the community and for customers to respond and change their water use activities.

Due to the lead times required for many of the drought management measures and the steep rate of storage decline in a severe drought, the final control line (Severe Drought Stage 4) cannot be set at too low a storage level, otherwise there may be insufficient time for the management measures to be implemented to reduce the rate of storage decline and/or support recovery of storage volumes.

The Stage 4 control line (Non-Essential Use Ban) has been set to prevent storage falling into the emergency storage zone; this is to ensure that the emergency storage volume is protected. The Emergency storage allocation is equivalent to 30 days of supply at unrestricted dry year average demand levels and is intended for providing a small drought contingency storage should a future drought be more severe than historic drought events.

The decision control lines were tested in the water resource model to assess how they performed against the worst historic drought conditions (1991-92 drought) with the current water resources system. Figure H.2 illustrates how the indicative control lines would have been progressively crossed in the severe two-year drought of 1991-92 based on the results from the water storage model testing (not the actual storage from 1991-92 as the supply system was less resilient in that drought event than currently due to the commissioning of Queen's Valley Reservoir and the development of the second stage of treatment at La Rosière desalination plant). During this severe drought event, the modelling indicates that water storage would remain below the Stage 4 Control Line for a maximum period of ~13 months duration (September 1991 to October 1992). Emergency storage was breeched for a maximum period of ~4 months (July to October 1992). Storage would be effectively empty for 1 month in August 1992 as indicated by the current supply-demand balance which shows a supply deficit in severe drought with current levels of dry year demand. However, these simulated storage levels do not take account of the benefit of the Temporary Use Ban water use restrictions and customer communications that would be implemented before the Stage 4 control line is crossed. In practice therefore, the duration of time that storage would stay below the Stage 4 control line would be reduced; the water use restrictions (including Non-Essential Use Ban once Stage 4 has been reached) would just be sufficient to prevent storage emptying completely with a repeat of the 1991-92 drought conditions.


The control lines in Figure H.2 are indicative and further work will be carried out to review and refine them taking account of the operational experience of their use, particularly in relation to the new additional stage of treatment at La Rosière desalination plant which has recently (2020) completed its final commissioning trials. The control lines will be reviewed a least every three years as they may need further optimisation in light of actual operational experience. They will also need amendment once any new water sources are developed in due course as part of the Water Resources and Drought Management Plan delivery programme.

8. SIMULATED LA ROSIÈRE DESALINATION PLANT USAGE

The drought control lines include the use of the La Rosière desalination plant. The control lines for considering the use of the two stages of treatment at the desalination plant have been simulated against the historic reservoir inflows used in the water resource model with the current water resources system. Figure H.3 shows when the La Rosière desalination plant is online during the simulated historic drought conditions.

Figure H.3 Modelled Desalination Plant Usage vs. Historic Drought Record and Indicative Stage 1 and Stage 2 Control Lines

The modelling indicates that the desalination plant would be used in 58 years out of the 107-year historic record period if the decision was made at Stage 1 and Stage 2 control lines to bring the plant into supply. The usage would typically be limited to below 500Ml/year; however this value would be exceeded for 10 separate drought events. On average the desalination plant would have been used for 5 consecutive months. Years of modelled peak usage are shown in Table H.6.

Table H.6 Simulated Desalination Plant Production Output (Maximum Capacity of 10.8 Ml/d)

Drought Year	1992	1991	1990	1922	1949	1976
Total Usage	3354	2433.5	2306.5	1973	1831.5	1590.5
per year (MI)						
Consecutive	April 91 - N	Nov 92	Jul 89- Jan 90	Sep 21 - Mar 22	Oct 48 - Jan	May 76 - Nov
Periods within			April 90 - Jan	Jun 21- Jan 23	49	76
year.			91		Mar 49 - Nov	
					49	
Daily Average	9.19	6.67	6.32	5.41	5.01	4.35
Usage (MI/d)						

9. DROUGHT MANAGEMENT MEASURES AND CUSTOMER LEVEL OF SERVICE

As set out earlier, a range of temporary drought management measures have been considered relative to permanent supply-demand measures. A trade-off needs to be determined between investing in permanent supply-demand measures (which increase the resilience of the supply system to drought and reduce the risk of requiring drought management measures), but which may not be used very often (and for which there would be an ongoing maintenance cost burden), with reliance on temporary drought management measures (notably temporary water use restrictions) which would be required occasionally to maintain essential water supplies to customers. This trade-off is reflected in the level of service that can be offered to customers in respect of implementing temporary water use restrictions, including comparing the existing level of service that can be provided with the costs involved in improving the level of service.

Level of Service Implications of Drought Control Lines

Assessment has been made of the level of service implications of the drought control lines against the historic drought events. A temporary use ban would be considered if storage falls below the Stage 3 control line. For the purposes of the simulation, a temporary use ban has only been initiated in the model if the Stage 3 control line is crossed between April and October inclusive. In winter months, temporary use bans are unlikely to be initiated even if the Stage 3 Control Line is reached as external water use is usually very low in winter and the restrictions would have little benefit.

Based on the simulated historic drought events in the water storage model and using forecast future demand plus target headroom (to cater for uncertainties), the temporary use ban Stage 3 Control Line would be crossed, on average, once in every 20 years on average. This is consistent with most water companies in Southern England (see Table H.7). The non-essential water use ban Stage 4 Control Line would be crossed, on average, only once in every 50 years, again consistent with most water companies in Southern England (see Table H.7).

Jersey Water believes it is unacceptable to plan for the use of rota cuts or standpipes even under worst historic drought conditions, i.e. the 1990-1992 drought which has a return period of approximately 1 in 200 years based on evidence from the same drought event in Southern England. This level of service is consistent with water companies in England where Defra has required water companies to ensure they can meet essential water supplies in a 1 in 200-year drought event without recourse to rota cuts or standpipes.

Measures to augment supply or reduce demand may help to improve this level of service or help maintain the level of service against the backdrop of a forecast increase in demand and small reduction in reliable supply. This is considered further as part of the development of the preferred programme for the 25-year planning period in the Water Resources and Drought Management Plan (see also **Appendix J**).

Table H.7 Level Of Service For Temporary Water Use Restrictions for Water Companies in England And Wales¹

Water	Temporary	Drought Orders to	Rota Cuts and
Company	Use	Ban Non-Essential	Standpipes
	Bans	Water Use	
Affinity Water	1 in 10 years	1 in 40 years	Considered
			Unacceptable,
			though may be
			considered in 1 in
			200-year drought or
			worse
Anglian Water	1 in 10 years	1 in 40 years	1 in 200 years
Bristol Water	1 in 15 years	1 in 33 years	1 in 100 years
Bournemouth Water	1 in 20 years	Not specified	Not Specified
Cambridge Water	1 in 20 years	1 in 50 years	1 in 100 years
Essex and Suffolk Water			
(Northumbrian Water)	1 in 20 years	1 in 50 years	Never
Hafren Dyfrdwy / Severn			
Dee	1 in 40 years	Not specified	Not specified
Hartlepool Water	1 in 10 years	1 in 40 years	Not Specified
	In line with United	In line with United	In line with United
Leep Utilities	Utilities (see below)	Utilities (see below)	Utilities (see below)
Portsmouth Water	1 in 20 years	1 in 80 years	1 in 200 years
South Staffordshire	1 in 40 years	1 in 80 years	Not anticipated up to
Water			a 1 in 200-year
			drought
Sutton and East Surrey	1 in 10 years	1 in 20 years	Only required in the
Water			most extreme
			droughts or
			emergency situations
			(1 in 200)
Veolia Water	1 in 25 years	1 in 100 years	1 in 100 years
Northumbrian Water	1 in 150 years	1 in 200 years	1 in 250 years
Severn Trent Water	3 in 100 years	3 in 100 years	Regarded as
			unacceptable.
			in up to a 1 in 200-

¹Information taken from published water company WRMPs in 2019

			year drought)
South East Water	1 in 10 years	1 in 40 years	Not Specified
South West Water	1 in 20 years	1 in 40 years	1 in 200 years
Southern Water	1 in 10 years	1 in 20 years	1 in 500 years
Thames Water	1 in 10 years on	1 in 20 years	Never.
	average for		
	sprinklers/unattended		
	hosepipe bans.		
	1 in 20 years for other		
	TUB elements		
United Utilities	1 in 20 years	1 in 35 years (to	None (resilient to 1 in
		2025)	200 years as per
		1 in 80 (from 2025)	Defra's reference
			level of service)
Welsh Water	1 in 20 years	1 in 40 years	Never
Wessex Water	1 in 100 years	1 in 150 years	Never
Yorkshire Water	1 in 25 years	1 in 80 years	1 in 500 years

10. DROUGHT MANAGEMENT COMMUNICATIONS

Once the drought management Control Line Stage 1 has been crossed, Jersey Water will decide on the establishment of a Drought Management Team to implement the Drought Management Plan, monitor the key drought indicators and ensure effective communications with the government, key stakeholders and customers. A stakeholder communications plan will be produced to keep government and key stakeholders informed of the drought situation and the measures being considered and/or implemented.

A customer communications plan will also be prepared to ensure Jersey Water keeps all its customers informed of the actions being taking to maintain essential water supplies and targeted advice to domestic customers and key commercial customer groups (agricultural, tourism, etc.) on how customers can help use water wisely. Media campaigns should be ongoing to maintain engagement.

Generally, media campaigns should use all avenues available, including TV and radio broadcasts, social media campaigns, newsletters, newspaper advertisements, billboard style advertising (e.g. on buses or street billboards) and Water Efficiency Roadshows (e.g. at DIY stores and retail hubs, plus appropriate public events).

Anecdotally, uptake of media campaigns in Jersey have been well received by customers but it should be noted there is a lead time for media campaigns to take full effect on customer water use behaviour.